下载亿题库APP
联系电话:400-660-1360
请谨慎保管和记忆你的密码,以免泄露和丢失
请谨慎保管和记忆你的密码,以免泄露和丢失
2019年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第十章 概率初步5道练习题,附答案解析,供您备考练习。
1、。()
(1)将骰子先后抛掷2次,抛出的骰子向上的点数之和为5的概率为p
(2)将骰子先后抛掷2次,抛出的骰子向上的点数之和为9的概率为p【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:D
答案解析:将骰子先后抛掷2次,总可能性共有36种。
点数之和为5的可能性为(1,4)(4,1)(2,3)(3,2)四种,
点数之和为9的可能性为(4,5)(5,4)(3,6)(6,3)四种。
从而两者的概率均为,即条件(1)和条件(2)都充分。
1、甲、乙、丙三人各自去破译一个密码,则密码能被破译的概率为。()
(1)甲、乙、丙三人能译出的概率分别为
(2)甲、乙、丙三人能译出的概率分别为【条件充分性判断】
A.条件(1)充分,但条件(2)不充分.
B.条件(2)充分,但条件(1)不充分.
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分.
D.条件(1)充分,条件(2)也充分.
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分.
正确答案:E
答案解析:用A,B,C分别表示甲、乙、丙能破译三个事件,题干要求推出,即
。
由条件(1),,从而
由条件(2),,从而
即条件(1)和(2)都不充分。
1、若,PA.=0.7,P(A-C)=0.4,P(AB)=0.5,则P(AB-C)=()。【问题求解】
A.0.1
B.0.2
C.0.3
D.0.4
E.0.5
正确答案:B
答案解析:P(AB-C)=P(AB)-P(ABC)=0.4-P(ABC)=0.5-P (C)由P(A-C)=P(A)-P (C)=0.4,可得P (C)=0.3,从而P(AB-C)=0.5-0.3=0.2。
1、从0,1,2,…,9这十个数字中任意选出三个不同的数字,求下列事件的概率:=“三个数字中不含0和5”
=“三个数字中不含0或5”【简答题】
1、求至少有一人击中目标的概率。【简答题】
1、求恰好有一人击中目标的概率。【简答题】
1、有甲、乙、丙三批罐头,每批100个,其中各有1个是不合格的,从每批中各抽出1个,抽出的3个中恰有1个不合格的概率约为()。【问题求解】
A.0.04
B.0.03
C.0.025
D.0.02
E.0.023
正确答案:B
答案解析:这是一个n=3,的伯努利试验,所求概率为
。
1、在36人中,血型情况如下:A型血12人,B型血10人,AB型8人,O型6人,若从中随机选出两人,则两人血型相同的概率是()。【问题求解】
A.
B.
C.
D.
E.以上结论均不正确
正确答案:A
答案解析:所求事件的概率为
2020-05-15
2020-05-15
2020-05-15
2020-05-15
2020-05-15
微信扫码关注公众号
获取更多考试热门资料