下载亿题库APP
联系电话:400-660-1360
请谨慎保管和记忆你的密码,以免泄露和丢失
请谨慎保管和记忆你的密码,以免泄露和丢失
2025年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理历年真题10道,附答案解析,供您考前自测提升!
1、已知,则=()。【问题求解】
A.1/2
B.1/5
C.1/6
D.1/13
E.1/14
正确答案:C
答案解析:。
2、某施工队承担开凿了一条长为2400米隧道的工程,在掘进了400米后,由于改进了施工工艺,每天比原计划多掘进2米,最后提前50天完成了施工任务,原计划施工工期是 ()。【问题求解】
A.200天
B.240天
C.250天
D.300天
E.350天
正确答案:D
答案解析:设原计划每天施工x米,则有,因此 x=8,原计划施工工期是。
3、现有一批文字材料需要打印,两台新型打印机单独完成此任务分别需要4小时与5小时,两台旧型打印机单独完成此任务分别需要9小时与11小时,则能在2.5小时内完成此任务。()(1)安排两台新型打印机同时打印(2)安排一台新型打印机与两台旧型打印机同时打印。【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(1)充分,但条件(2)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:D
答案解析:设此任务工作量为1,两台新型打印机每小时分别完成工作量的两台旧型打印机每小时分别完成由条件(1),由条件(2),
4、某年级60名学生中,有30人参加合唱团,45人参加运动队,其中参加合唱团而未参加运动队的有8人,则参加运动队而未参加合唱团的有 ()。【问题求解】
A.15人
B.22人
C.23人
D.30人
E.37人
正确答案:C
答案解析:设A:参加合唱团,B:参加运动队,则如图所示,
5、已知实数a,b,c,d满足,则|ac+bd| (1)直线ax+by=1与cx+dy=1仅有一个交点(2)a≠c,b≠d【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:A
答案解析:的充要条件为ad - bc≠0。由条件(1),两直线不平行,从而即ad - bc≠0,条件(1)充分。现取则满足a≠c,b≠d,但ad - bc=0,即|ac+bd|=1,故条件(2)不充分。
6、一所四年制大学每年的毕业生七月份离校,新生九月份入学。该校2001年招生2000名,之后每年比上一年多招200名,则该校2007年九月底的在校学生有()。【问题求解】
A.14000名
B.11600名
C.9000名
D.6200名
E.3200名
正确答案:B
答案解析:列举一下每年入学情况如下:,2007年9月底在校生有:2004.09入学、2005.09入学、2006.09入学、2007.09入学,共有2600+2800+3000+3200=11600名。
7、在8名志愿者中,只能做英语翻译的有4人,只能做法语翻译的有3人,既能做英语翻译又能做法语翻译的有1人,现从这些志愿者中选取3人做翻译工作,确保英语和法语都有翻译的不同选法共有 ()种。【问题求解】
A.12
B.18
C.21
D.30
E.51
正确答案:E
答案解析:不妨设①号志愿者既能做英语翻译又能做法语翻译,可设计为两种方案:一、诜出的3人中含①号的选法为;二、选出的3人中不含①号的选法为;从而共有21+30=51(种)。
8、已知为等差数列,则该数列的公差为零。()(1)对任何正整数n,都有(2)【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和条件(2)单独都不充分,条件(1)和(2)联合起来也不充分
正确答案:C
答案解析:条件(1),,即,整理得,令,①当=0,此时d=0,对于任何正整数n都成立,由于n≥0,则;②当<0时,此时d<0,对于任何正整数n都成立,则,解得:,综上可知或,不充分。条件(2),,不充分。联合起来有或,有,充分。
9、已知船在静水中的速度为28km/h,河水的流速为2km/h。则此船在相距78km的两地间往返一次所需时间是()。【问题求解】
A.5.9h
B.5.6h
C.5.4h
D.4.4h
E.4h
正确答案:B
答案解析:顺水:,解得:;逆水:,解得:。往返所需时间为:。
10、10名网球选手中有2名种子选手,现将他们分成两组,每组5人,则2名种子选手不在同一组的概率为 ()。【问题求解】
A.
B.
C.
D.
E.
正确答案:C
答案解析:将10个人分为两组,每组5人,总分法为所求事件共有,从而概率。
2020-05-15
2020-05-15
2020-05-15
2020-05-15
2020-05-15
微信扫码关注公众号
获取更多考试热门资料