下载亿题库APP
联系电话:400-660-1360
请谨慎保管和记忆你的密码,以免泄露和丢失
请谨慎保管和记忆你的密码,以免泄露和丢失
2023年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理历年真题10道,附答案解析,供您考前自测提升!
1、若实数a,b,c,满足a:b:c=1:2:5,且a+b+c=24,则()。【问题求解】
A.30
B.90
C.120
D.240
E.270
正确答案:E
答案解析:设 a=t,b=2t,c=5t,则 8t=24,t=3,从而。
2、某委员会由三个不同专业的人员组成,三个专业的人数分别是2,3,4,从中选派2位不同专业的委员外出调研,则不同的选派方式有()。【问题求解】
A.36种
B.26种
C.12种
D.8种
E.6种
正确答案:B
答案解析:总选法为,两人来自同一专业的选法为,从而两人来自不同专业的选法为36-10=26(种)。
3、有一批同规格的正方形瓷砖,用它们铺满整个正方形区域时剩余180块,将此正方形区域的边长增加一块瓷砖的长度时,还需增加21块瓷砖才能铺满,该批瓷砖共有()。【问题求解】
A.9981块
B.10000块
C.10180块
D.10201块
E.10222块
正确答案:C
答案解析:设瓷砖数为x,每块边长为a,原正方形区域边长为y,则,得y=100a,x=10180。
4、某商场将每台进价为2000元的冰箱以2400元销售时,每天销售8台,调研表明这种冰箱的售价每降低50元,每天就能多售出4台。若要每天销售利润最大,则该冰箱的定价应为()。【问题求解】
A.2200元
B.2250元
C.2300元
D.2350元
E.2400元
正确答案:B
答案解析:设定价为2400 - 50a,则销量为8+4a,从而利润,从而a=3时利润最大,此时定价为2400 -50 ×3=2250(元)。
5、已知数列,则。()(1)(2)【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:A
答案解析:由条件(1),成立;由条件(2),取分别为-10,-9,…,-1,则,因此条件(1)充分,条件(2)不充分。
6、圆上到原点距离最远的点是()。【问题求解】
A.(-3,2)
B.(3,-2)
C.(6,4)
D.(-6,4)
E.(6,-4)
正确答案:E
答案解析:圆的标准式为,原点(0,0)在圆上,则圆心(3,-2)为(0,0)及所求点的中点,故有,解得所求点坐标为(6,-4)。
7、已知,则0≤f(1)≤1。()(1)f(x)在区间[0,1]中有两个零点(2)f(x)在区间[1,2]中有两个零点【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:D
答案解析:由条件(1),f(1)≥0且,对称轴满足,得;由条件(2),f(1)≥0且,对称轴满足,得。由于,从而由条件(1)或条件(2)都有f(1)≤1成立,因此条件(1)和条件(2)都单独充分。
8、从1到100的整数中任取一个数,则该数能被5或7整除的概率为()。【问题求解】
A.0.02
B.0.14
C.0.2
D.0.32
E.0.34
正确答案:D
答案解析:能被5整除的数共有20个(5k,k=1,2,…,20),能被7整除的数共有14个(7k,k=1,2,…,14),能被5整除且被7整除的数共有2个(35k,k=1,2),从而所求概率。
9、上午9时一辆货车从甲地出发前往乙地,同时一辆客车从乙地出发前往甲地,中午12时两车相遇,已知货车和客车的速度分别为每小时90千米和100千米,则当客车到达甲地时,货车距乙地的距离为()。【问题求解】
A.30千米
B.43千米
C.45千米
D.50千米
E.57千米
正确答案:E
答案解析:两地距离S=(90+100)×3=570(千米),客车从乙地到甲地所需时间为,从而所求距离为570-90×5.7=57(千米)。
10、如图所示,在四边形ABCD中,AB//CD,AB与CD的边长分别为4和8。若△ABE的面积为4,则四边形ABCD的面积为()。【问题求解】
A.24
B.30
C.32
D.36
E.40
正确答案:D
答案解析:由于AB//CD,从而∠BAE=∠DCE,∠ABE=∠CDE,又∠AEB=∠CED,则△ABE~△CDE,,又因为,所以,△ABE与△BCE同高,故,所以,同理,因此。
2020-05-15
2020-05-15
2020-05-15
2020-05-15
2020-05-15
微信扫码关注公众号
获取更多考试热门资料