下载亿题库APP
联系电话:400-660-1360
请谨慎保管和记忆你的密码,以免泄露和丢失
请谨慎保管和记忆你的密码,以免泄露和丢失
2023年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第九章 排列与组合5道练习题,附答案解析,供您备考练习。
1、从7人中选出4人排成一排,则共有()种不同排法。【问题求解】
A.720
B.840
C.860
D.800
E.780
正确答案:B
答案解析:共有
2、5个不同元素(i=1,2,3,4,5)排成一列,规定不许排第一,不许排第二,不同的排法种数是()。【问题求解】
A.64
B.72
C.84
D.78
E.62
正确答案:D
答案解析:5个不同元素排成一列,总排法为5!种;排第一的排法有4!种;同理排第二的排法也有4!种;而排第一且排第二的排法有3!种;从而本题所求为5!-4!-4!+3!=78(种)。
3、从11名工人中选出4人排版,4人印刷,则共有185种不同的选法。()(1)11名工人中5人只会排版,4人只会印刷(2)11名工人中2人既会排版,又会印刷【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:C
答案解析:此题只能选 C.或 E..联合条件(1)和条件(2),可分三类情况:(1)从只会印刷的4人中任选2人,两样都会的人印刷,只会排版的5人中任选4人,即;(2)从只会印刷的4人中任选3人,两样都会的2人中选一人印刷,另外一个人与只会排版的5人合在一起任选4人去排版,即;(3)只会印刷的人都选即,从其他7人中任选4人排版,即;则共有
4、n=3。()(1)若(2)若【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:A
答案解析:由条件(1),得(2n+1)(2n)(2n-1)(2n-2)=140n(n-1)(n-2),即,即,因为且n为整数,所以n=3,即条件(1)是充分的。由条件(2),可得 n(n-1)(n-2)(n-3)=24n(n-1)(n-2),整理得:n(n-1)(n-2)(n-3-24)=0,即 n=0,n=1,n=2,n=27。由于n≥4,从而n=27,条件(2)不充分。
5、从1,2,3,4,…,20这20个自然数中任选3个不同的数,使它们成等差数列,这样的等差数列共有()。【问题求解】
A.90个
B.120个
C.160个
D.180个
E.200个
正确答案:D
答案解析:用穷举法,公差d=1的取法共有(1,2,3),(2,3,4),…,(18,19,20),公差d=2的取法共有(1,3,5),(2,4,6),…,(16,18,20),依次类推,公差d=9的取法共有(1,10,19),(2,11,20),而公差d=-1,d=-2,…,d=-9分别与公差d=1,d=2,…,d=9的取法相同,因此,总取法为2(18+16+14+…+2)=4(1+2+3+…+9)=
2020-05-15
2020-05-15
2020-05-15
2020-05-15
2020-05-15
微信扫码关注公众号
获取更多考试热门资料