下载亿题库APP
联系电话:400-660-1360
请谨慎保管和记忆你的密码,以免泄露和丢失
请谨慎保管和记忆你的密码,以免泄露和丢失
2023年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第五章 数列5道练习题,附答案解析,供您备考练习。
1、四个数中,前三个数成等差数列,它们的和为12,后三个数成等比数列,它们的和是19,则这四个数之积为()。【问题求解】
A.432或-18000
B.-432或18000
C.-432或-18000
D.432或18000
E.以上结论均不正确
正确答案:A
答案解析:设前三个数为,解得。由,可解得 d=2或d=-14因而,这四个数为2,4,6,9或18,4,-10,25。则这四个数的积为2×4×6×9=432或18×4×(-10)×25=-18000。
2、数列是等差数列。()(1)点都在直线y=2x+1上(2)点都在抛物线【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:A
答案解析:由条件(1),得,是公差为2的等差数列,所以条件(1)充分。由条件(2),得,则当n≥2时,,将n=1代入所以通项公式,故不是等差数列,所以条件(2)不充分。
3、已知数列的值一定是1。()(1)是等差数列,且(2)是等比数列,且【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:B
答案解析:由条件(1),得公差,从而,即条件(1)不充分。由条件(2),设公比为q,则,得,所以,即条件(2)充分。
4、设为等差数列,为其前n项和,且满足成立的最小n是()。【问题求解】
A.15
B.16
C.17
D.18
E.19
正确答案:C
答案解析:由已知成立的最小n是17。
5、设是等比数列,其的值可唯一确定。()(1)(2)【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:A
答案解析:设数列公比为q。由条件(1),,得 1+q=(q+1)(q-1),从而q=2,,因此的值可以唯一确定,条件(1)充分。由条件(2),即,条件(2)不充分。
2020-05-15
2020-05-15
2020-05-15
2020-05-15
2020-05-15
微信扫码关注公众号
获取更多考试热门资料