
下载亿题库APP
联系电话:400-660-1360

请谨慎保管和记忆你的密码,以免泄露和丢失

请谨慎保管和记忆你的密码,以免泄露和丢失

2020年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第十二章 数据描述5道练习题,附答案解析,供您备考练习。
1、
。()
(1)
(2)
【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:A
答案解析:由条件(1),
,因此
,
,因而,条件(1)充分。
由条件(2),得
,即条件(2)不充分。
1、若x和y是整数,则xy+1能被3整除。()
(1)当x被3除时,其余数为1
(2)当y被9除时,其余数为8【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:C
答案解析:取x =4,y=1,则知条件(1)不充分。
取y =17,x=2,知条件(2)也不充分。
联合条件(1)和条件(2),令x=3q+1,y=9l+8,则xy +1=(3q +1)(9l+8)+1 =27ql+24q +9l +9 =3(9ql +8q+3l+3),因此,xy +1能被3整除。
1、已知p,q为质数,且
,则以p+3,1-p+q,2p+q-4为边长的三角形是()。【问题求解】
A.等边三角形
B.等腰但非等边三角形
C.直角三角形
D.钝角三角形
E.以上结论均不正确
正确答案:C
答案解析:由已知,
3q为一奇一偶,从而p,q为一奇一偶的质数。若q=2,则
无整数解。因此得p=2,q=13。则以5,12,13为边长的三角形是直角三角形(由于
成立)。
1、
()。【问题求解】
A.
B.
C.
D.
E.
正确答案:B
答案解析:注意到
,从而
1、
。()
(1)a表示
的小数部分
(2)a表示
的小数部分【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:A
答案解析:题干要求
。
由条件(1),
,即条件(1)是充分的。
由条件(2),
因此条件(2)不充分。
05:312020-05-15
02:382020-05-15
04:042020-05-15
03:352020-05-15
04:002020-05-15

微信扫码关注公众号
获取更多考试热门资料