下载亿题库APP
联系电话:400-660-1360
请谨慎保管和记忆你的密码,以免泄露和丢失
请谨慎保管和记忆你的密码,以免泄露和丢失
2025年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第九章 排列与组合5道练习题,附答案解析,供您备考练习。
1、3个人坐在有8个座位的一排椅子上,若每个人的左右两边都有空座位,则不同坐法的种数是()。【问题求解】
A.24
B.23
C.22
D.25
E.26
正确答案:A
答案解析:如图所示,将8个座位编号,第一步:从8个座位中选出3个,要求选出来的每个座位的左右都有空座位,共有4种(从左到右)(2,4,6),(2,4,7),(2,5,7),(3,5,7)。第二步:安排3个人去坐选好的3个座位,共有3!=6(种)。不同坐法,从而由乘法原理共有,4×6=24(种)。
2、若将10只相同的球随机放入编号为1,2,3,4的四个盒子中,则每个盒子不空的投放方法有()。【问题求解】
A.72种
B.84种
C.96种
D.108种
E.120种
正确答案:B
答案解析:将10个球排成一排,从每相邻两球的9个间隙中选出3个位置放入分隔板,则可将10个相同球分为四部分,且每部分都不空,从而共有
3、4个人参加3项比赛,不同的报名法有种。()(1)每人至多报两项且至少报1项(2)每人报且只报1项【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:B
答案解析:由条件(1),4个人依次去报名,每个人有(种)方式,由乘法原理,共有种不同的报名方法.从而条件(1)不充分。由条件(2),4个人依次报名,每个人有(种)报名方式,从而共有种不同的报名法,即条件(2)是充分的。
4、某校从8名教师中选派4名教师同时去4个边远地区支教(每地一人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案有()。【问题求解】
A.300种
B.400种
C.500种
D.600种
E.700种
正确答案:D
答案解析:将甲、丙两人看成是一个元素,有两种情况,他们去或不去,而甲、乙两人中又只能选一个人去:甲被选去时,有;当甲未被选去时,有;所以共有不同的选法 240+360=600(种)。
5、7个人排成一排,甲不在排头且乙不在排尾的排法共有()。【问题求解】
A.3620种
B.3640种
C.3720种
D.3740种
E.3820种
正确答案:C
答案解析:7个人排成一排,总的排法有种,甲排在排头的排法有种,乙排在排尾的排法也有种,甲排在排头且乙排在排尾的排法有种,从而排法总数为
2020-05-15
2020-05-15
2020-05-15
2020-05-15
2020-05-15
微信扫码关注公众号
获取更多考试热门资料