下载亿题库APP
联系电话:400-660-1360
请谨慎保管和记忆你的密码,以免泄露和丢失
请谨慎保管和记忆你的密码,以免泄露和丢失
2023年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第九章 排列与组合5道练习题,附答案解析,供您备考练习。
1、从11名工人中选出4人排版,4人印刷,则共有185种不同的选法。()(1)11名工人中5人只会排版,4人只会印刷(2)11名工人中2人既会排版,又会印刷【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:C
答案解析:此题只能选 C.或 E..联合条件(1)和条件(2),可分三类情况:(1)从只会印刷的4人中任选2人,两样都会的人印刷,只会排版的5人中任选4人,即;(2)从只会印刷的4人中任选3人,两样都会的2人中选一人印刷,另外一个人与只会排版的5人合在一起任选4人去排版,即;(3)只会印刷的人都选即,从其他7人中任选4人排版,即;则共有
2、从由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有()。【问题求解】
A.186个
B.187个
C.190个
D.191个
E.192个
正确答案:E
答案解析:不能被5整除,则个位数只可能是1,2,3,4中的一个。不含0时,满足题意的四位数有;含有0时,满足题意的四位数有;故共有 96+96=192(个),
3、从1,2,3,4,…,20这20个自然数中任选3个不同的数,使它们成等差数列,这样的等差数列共有()。【问题求解】
A.90个
B.120个
C.160个
D.180个
E.200个
正确答案:D
答案解析:用穷举法,公差d=1的取法共有(1,2,3),(2,3,4),…,(18,19,20),公差d=2的取法共有(1,3,5),(2,4,6),…,(16,18,20),依次类推,公差d=9的取法共有(1,10,19),(2,11,20),而公差d=-1,d=-2,…,d=-9分别与公差d=1,d=2,…,d=9的取法相同,因此,总取法为2(18+16+14+…+2)=4(1+2+3+…+9)=
4、4名学坐和2名教师排成一排照相,2位教师不在两端,且要相邻的排法种数是()。【问题求解】
A.72
B.108
C.144
D.288
E.136
正确答案:C
答案解析:如图所示,将6个位置编号,第一步,为2位老师选位置,则有(2,3),(3,4),(4,5)3种排法;第二步,让2位老师站位,有2!=2(种)排法;第三步,让4名学生站位,有4!种排法,从而所求为3×2×4!=144(种)。
5、N=125。()(1)有5本不同的书,从中选出3本送给3名同学,每人一本,共有Ⅳ种不同的选法(2)书店有5种不同的书,买3本送给3名同学,每人一本,共有Ⅳ种不同的送法【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:B
答案解析:由条件(1)。由条件(2),每人必须送一本书且只能送一本书,但同一种书可以送给多个人,此类问题可归纳为分房问题,这里人是“人”,书是“房”,因此不同送法为。
2020-05-15
2020-05-15
2020-05-15
2020-05-15
2020-05-15
微信扫码关注公众号
获取更多考试热门资料