下载亿题库APP
联系电话:400-660-1360
请谨慎保管和记忆你的密码,以免泄露和丢失
请谨慎保管和记忆你的密码,以免泄露和丢失
2021年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第五章 数列5道练习题,附答案解析,供您备考练习。
1、为等比数列,且的值为常数。()(1)(2)【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:D
答案解析:若条件(1)成立,则有,为常数。若条件(2)成立,则有,为常数,即条件(1)、(2)都充分。
2、已知数列-1,,-4成等差数列,-1,,-4成等比数列,则()。【问题求解】
A.
B.
C.
D.
E.
正确答案:A
答案解析:由-1,,-4成等差数列,则-4=(-1)+3d,得公差 d=-1。由-1,,-4成等比数列,得,即公比。因此。
3、等差数列前11项和()(1)(2)【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:D
答案解析:,即要求由条件(1),由条件(2),即条件(1)和条件(2)都是充分的。
4、是公比为q的等比数列的前n项之和,且是()。【问题求解】
A.公比为nq的等比数列
B.公比为的等比数列
C.公比为的等比数列
D.公比为q的等比数列
E.不是等比数列
正确答案:B
答案解析:设首项为,公比为q,分两种情况:(1)q=1,则从而。是公比为1的等比数列。(2)q≠1,则综合(1)和(2),可知的等比数列。
5、7个数排成一排,奇数项成等差数列,偶数项成等比数列,且奇数项的和与偶数项的积的差为42,首项、末项、中间项之和为27,则中间项为()。【问题求解】
A.-2
B.-1
C.0
D.1
E.2
正确答案:E
答案解析:由已知,可设这7个数为,满足,整理得,消去,d得,解析:得。
2020-05-15
2020-05-15
2020-05-15
2020-05-15
2020-05-15
微信扫码关注公众号
获取更多考试热门资料