下载亿题库APP
联系电话:400-660-1360
请谨慎保管和记忆你的密码,以免泄露和丢失
请谨慎保管和记忆你的密码,以免泄露和丢失
2025年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第五章 数列5道练习题,附答案解析,供您备考练习。
1、等差数列,则前9项的和=()。【问题求解】
A.66
B.87
C.99
D.271
E.324
正确答案:C
答案解析:设首项为,公差为d,由已知条件得,整理解得
2、。()(1)-9,-1成等差数列(2)-9,,-1成等比数列【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:C
答案解析:条件(1)与条件(2)单独都不充分,联合条件(1)和条件(2),(q为条件(2)中公比),
3、设为等比数列,已知=()。【问题求解】
A.-5
B.-4
C.-3
D.3
E.4
正确答案:A
答案解析:,则原式为,(由于本题为单选题,答案中只有-5),从而。
4、已知数列的前n项和,则下面正确的是()。【问题求解】
A.是等差数列
B.
C.
D.
E.以上均不正确
正确答案:A
答案解析:且也满足的通项公式,,为常数,因此,是公差d=8的等差数列。
5、三个数顺序排成等比数列,其和为114,这三个数依前面的顺序又是某等差数列的第1、4、25项,则此三个数的各位上的数字之和为()。【问题求解】
A.24
B.33
C.24或33
D.22或33
E.24或35
正确答案:C
答案解析:设三个数为由已知,从消去d可得:,即q=7或q=1,分别代入得从而这三个数依次是2,14,98或38,38,38。即此三个数各位上的数字之和为2+1+4+9+8=24或3+8+3+8+3+8=33。
2020-05-15
2020-05-15
2020-05-15
2020-05-15
2020-05-15
微信扫码关注公众号
获取更多考试热门资料