下载亿题库APP
联系电话:400-660-1360
请谨慎保管和记忆你的密码,以免泄露和丢失
请谨慎保管和记忆你的密码,以免泄露和丢失
2025年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第九章 排列与组合5道练习题,附答案解析,供您备考练习。
1、从1,2,3,4,…,20这20个自然数中任选3个不同的数,使它们成等差数列,这样的等差数列共有()。【问题求解】
A.90个
B.120个
C.160个
D.180个
E.200个
正确答案:D
答案解析:用穷举法,公差d=1的取法共有(1,2,3),(2,3,4),…,(18,19,20),公差d=2的取法共有(1,3,5),(2,4,6),…,(16,18,20),依次类推,公差d=9的取法共有(1,10,19),(2,11,20),而公差d=-1,d=-2,…,d=-9分别与公差d=1,d=2,…,d=9的取法相同,因此,总取法为2(18+16+14+…+2)=4(1+2+3+…+9)=
2、有4名男生,3名女生站成一排,男生不站排头和排尾的排法种数是()。【问题求解】
A.760
B.720
C.680
D.620
E.480
正确答案:B
答案解析:第一个步骤,选1名女生站排头,共有3种可能性;第二个步骤,再选1名女生站排尾,则有2种可能性;第三个步骤,诖剩下5人站位,则有5!=120(种)可能性;从而总排法为3×2×120=720(种)。
3、有甲、乙、丙三项任务,现从10人中选4人承担这三项任务,不同的选派方法共有2520种。(1)甲项任务需2人承担,乙和丙项任务各需1人承担(2)乙项任务需2人承担,甲和丙项任务各需1人承担【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:D
答案解析:由条件(1),从10人中依次选出2,1,1人分配承担甲、乙、丙三项任务,从而不同的选派方法为。同理,由条件(2)也可得选派方法为2520种。
4、4位老师分别教4个班的课,考试时要求老师不在本班监考,则不同的监考方法共有()。【问题求解】
A.8种
B.9种
C.10种
D.11种
E.12种
正确答案:B
答案解析:设教师A,B,C,D分别教甲、乙、丙、丁四个班,A有3种可能,监考乙、丙或丁班。若选定乙班,B,C和D三人监考甲、丙和丁班,有3种可能方法,即总共有3×3=9种不同方法。
5、汽车上有10名乘客,沿途设有5个车站,乘客下车的不同方式共有()。【问题求解】
A.
B.
C.
D.
E.以上结论均不正确
正确答案:C
答案解析:用乘法原理,第一步,安排第一个乘客下车,有5种方式;第二步,安排第二个乘客下车,也有5种方式;依次类推,10名乘客下车的方式共有种.
2020-05-15
2020-05-15
2020-05-15
2020-05-15
2020-05-15
微信扫码关注公众号
获取更多考试热门资料